[๐Ÿ“ƒ CVO(๊ณ ๊ฐ ๊ฐ€์น˜ ์ตœ์ ํ™”) ์— ๋Œ€ํ•ด] ๐Ÿ’ก ๋‹จํ‰ Retention ๊ด€๋ จ ํ”„๋กœ์ ํŠธ๋ฅผ ์ง„ํ–‰ํ•  ๋•Œ ๊ฐ€์žฅ ์–ด๋ ค์› ๋˜ ์ ์€ โ€˜์–ด๋–ค ์ง€ํ‘œโ€™๋ฅผ OMTM ์œผ๋กœ ์‚ผ์•„์•ผํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์–ด๋–ป๊ฒŒ Retention Framework ์„ ๊ตฌ์ถ•ํ•˜๊ณ , Product ์— ๋ฐ˜์˜ํ•ด์•ผํ•˜๋Š”๊ฐ€์˜€๋Š”๋ฐ, ๊ฒฐ๊ตญ ์ด ๋ฌธ์ œ๋Š” CVO(๊ณ ๊ฐ ๊ฐ€์น˜ ์ตœ์ ํ™”) ์˜ ๋ฒ”์ฃผ ์•ˆ์— ์žˆ์—ˆ๋˜ ๋‚ด์šฉ์ด์—ˆ์Šต๋‹ˆ๋‹ค. โ€˜GMVโ€™ orโ€™ Revenueโ€™๋ฅผ ํฌ์ปค์‹ฑํ•œ ๊ธฐ์กด Metric ๋“ค์€ โ€˜์„œ๋น„์Šค ์ถฉ์„ฑ๋„โ€™ , โ€™๊ณ ๊ฐ์—ฌ์ •โ€™ ๋“ฑ์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ ์ด์œ ์ด๊ธฐ๋„ ํ•œ๋ฐ. ์ด๋Ÿฌํ•œ ๋ถ€๋ถ„์„ ๊ฐœ์„ ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋‚˜์˜จ ๊ฐœ๋…์œผ๋กœ ๊ณ ๊ฐ ๊ฐ€์น˜ ์ตœ์ ํ™”(CVO)๋ฅผ ์ดํ•ดํ•˜๋ฉด ๋  ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. CLV ๊ด€์ ์—์„œ์˜ ๊ณ ๊ฐ ๋ถ„๋ฅ˜ & ๋ถ„์„ -> ๊ณ ๊ฐ ์—ฌ์ • ๊ฐœ์„  -> ๊ฐœ์ธํ™” ์บ ํŽ˜์ธ -> ์ธก์ • -> ์ง€์†์ ์ธ ๊ฐœ์„  ์— ์ด๋ฅด๋Š” โ€˜๊ณ ๊ฐ ๊ฐ€์น˜ ์ตœ์ ํ™”โ€™๋Š” ๊ธฐ์—…์—์„œ ๋์ด ์—†์ด ์ถ”๊ตฌํ•ด์•ผํ•  ํ”„๋กœ์„ธ์Šค์ด๊ณ , ๋ฒ”์œ„๊ฐ€ ๊ด‘๋ฒ”์œ„ ํ•˜๊ธด ํ•˜์ง€๋งŒ, ๊ด‘๊ณ ๋น„ ๋˜๋Š” ํŠธ๋ž˜ํ”ฝ์„ ๋Š˜๋ฆฌ๋Š” ๊ฒƒ๋ณด๋‹ค ํ›จ์”ฌ ๋” ํšจ๊ณผ์ ์ธ ํ”„๋กœ์„ธ์Šค์ž…๋‹ˆ๋‹ค. ๐Ÿ“ƒ ํ•ต์‹ฌ ๋‚ด์šฉ ์š”์•ฝ ๐Ÿ‘‰ CVO๋Š” ์–ด๋–ป๊ฒŒ ์šฐ๋ฆฌ ์ ‘๊ทผ ๋ฐฉ์‹์„ ๋ฐ”๊พธ๋‚˜? CVO(Customer Value Optimization)๋Š” ์ข‹์€ Customer Journey๋ฅผ ๋งŒ๋“ค๊ณ , ๋งˆ์ผ€ํŒ… ROI๋ฅผ ๊ทน๋Œ€ํ™” ์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ, ๋ธŒ๋žœ๋“œ ๊ฐ€์น˜, ๊ณ ๊ฐ ์ถฉ์„ฑ๋„๋ฅผ ๊ฐœ์„  ์‹œํ‚ค๊ธฐ ์œ„ํ•ด Customer Life Cycle ์ตœ์ ํ™”์— ์ค‘์ ์„ ๋‘”๋‹ค. โ€œ์ผ๋ฐ˜์ ์ธ E-Commerce Growth ๊ณต์‹ โ€œโ€จ T * CR * AOV = G G : Growth T : Traffic CR : Conversion Rate AOV : Average Order Value ๊ธฐ์กด E-Commerce Growth ๊ณต์‹ ๋‹จ์  ? 1. ๋‹จ๊ธฐ์ ์ธ ์„ฑ์žฅ ์ง€ํ‘œ ๊ธฐ์ค€์œผ๋กœ๋Š” ์œ ์šฉํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ์žฅ๊ธฐ์ ์ธ ๋น„์ง€๋‹ˆ์Šค ์„ฑ์žฅ์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ถ€์กฑ ( ํŠธ๋ž˜ํ”ฝ์ด ์ฆ๊ฐ€ํ•œ๋‹ค๊ณ  ํ•ด์„œ ๋งค์ถœ, ์ด์ต, ๊ณ ๊ฐ ์ถฉ์„ฑ๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์€ ์•„๋‹˜) 2. ๊ณ ๊ฐ ํ–‰๋™์€ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— E-Commerce ํšŒ์‚ฌ๋Š” ๊ณ ๊ฐ๊ณผ ๋ฐ์ดํ„ฐ๊ฐ€ ์œ ๋™์ ์ž„์„ ์ดํ•ด 3. ๊ณ ๊ฐ ์ถฉ์„ฑ๋„๋ฅผ 5% ๋†’์ด๋ฉด, ์ˆ˜์ต์€ 25~95% ๊นŒ์ง€ ์ฆ๊ฐ€. ๊ฒฝํ—˜์ด ์ข‹์€ ๊ณ ๊ฐ์€ 3.5๋ฐฐ ๋” ๋†’๊ณ , ์ฃผ๋ณ€์— ์„œ๋น„์Šค๋ฅผ ์ถ”์ฒœํ•  ํ™•๋ฅ ์€ 5๋ฐฐ ๋” ๋†’์Œ. ๐Ÿ‘‰ ๊ทธ๋Ÿผ ๊ณ ๊ฐ ๊ฐ€์น˜ ๊ฐœ์„ ์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”? 1. ํด๋ผ์ด์–ธํŠธ ์ˆ˜ 2. ๊ณ ๊ฐ ๋‹น ํ‰๊ท  ๊ฑฐ๋ž˜๊ฑด์ˆ˜ 3. ๊ณ ๊ฐ์ด ๋” ์ž์ฃผ ๊ตฌ๋งค๋ฅผ ์œ ๋„ ์— Value๋ฅผ ๋‘๊ณ  ์ด๋ฅผ ๋ฐ˜์˜ํ•œ ์„ฑ์žฅ ๊ณต์‹ C x CLV/CAC = G C = Customers(Traffic x Conversion Rate) CLV = Customer Revenue - ( CAC + Cost of Serving that Customer) CAC = Customer Acquisition Cost G = Growth - ํŠธ๋ž˜ํ”ฝ์— ๋Œ€ํ•œ ์ง‘์ฐฉ์„ ๋ฒ—์–ด๋‚˜, ๊ฐ€์žฅ ๋‚ฎ์€ ๋น„์šฉ( Acquisition & Maintenance) ์œผ๋กœ ์ˆ˜์ต์„ ์ฐฝ์ถœํ•˜๋Š” ๊ณ ๊ฐ ์ฆ๊ฐ€์— ์ดˆ์  - ๊ณ ๊ฐ ์‹ ๊ทœ ํš๋“์€ ์ค‘์š”ํ•˜์ง€๋งŒ ๋น„์šฉ์ด ๋น„์‹ธ์ง€๊ณ  ์žˆ๊ณ , ๊ณ ๊ฐ ํ‰์ƒ ๊ฐ€์น˜๋ฅผ ๋‹ด๋ณด ํ•˜์ง€๋Š” ์•Š์Œ - 5๋…„ ๋™์•ˆ ๊ณ ๊ฐํš๋“๋น„์šฉ์€ 5๋ฐฐ ์ฆ๊ฐ€ํ–ˆ๊ณ , ๊ธฐ์กด ๊ณ ๊ฐ์„ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค 5๋ฐฐ ๋” ๋น„์Œˆ ๐Ÿ‘‰ ๊ณ ๊ฐ ๊ฐ€์น˜๋ฅผ ์ตœ์ ํ™” ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”? 1. ํšŒ์‚ฌ์—์„œ ์„ฑ๊ณต์„ ์ •์˜ํ•˜๋Š” ๋ฐฉ์‹์„ ๋ณ€ํ™”ํ•  ๊ฒƒ 2. CLV ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” KPI ๋ฅผ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•  ๊ฒƒ 3. ๊ฐ RFM ๊ทธ๋ฃน์— ๋Œ€ํ•œ ์—ฐ๊ตฌ & ์ง‘์ค‘ 4. ์ •๋Ÿ‰์  ๋ฐ์ดํ„ฐ์—์„œ ๊ณ ๊ฐ ํŽธ์ฐจ๋ฅผ ์ฐพ์„ ๊ฒƒ 5. RFM Segmentation & Analysis ๋ฅผ ํ†ตํ•œ ICP(Ideal Customer Profile) ์ˆ˜๋ฆฝ 6. Customer Journey Mapping ์ตœ์ ํ™” 7. Retention ์ „๋žต ์ˆ˜๋ฆฝ 8. ์ง€์†์ ์ธ ์ตœ์ ํ™” 9. ๋ชจ๋“  ์ฑ„๋„์—์„œ ์ง€์†์ ์ธ ๊ฐœ์ธํ™” ์บ ํŽ˜์ธ์„ ์กฐ์งํ™”ํ•  ๊ฒƒ

How to Master Customer Value Optimization | CXL

CXL

How to Master Customer Value Optimization | CXL

๋‹ค์Œ ๋‚ด์šฉ์ด ๊ถ๊ธˆํ•˜๋‹ค๋ฉด?

๋˜๋Š”

์ด๋ฏธ ํšŒ์›์ด์‹ ๊ฐ€์š”?

2020๋…„ 9์›” 2์ผ ์˜ค์ „ 2:40

๋Œ“๊ธ€ 0

    ํ•จ๊ป˜ ์ฝ์€ ๊ฒŒ์‹œ๋ฌผ

    ์˜ค๋Š˜์€ ํˆฌ์ž ์™„๋ฃŒ์ผ์ด์ž ์•„๋ฏธ๊ณ  ๋Ÿฐ์นญ 100์ผ. ๋ณ„ ์ƒ๊ฐ ์—†์—ˆ๋Š”๋ฐ, VC ํŒŒํŠธ๋„ˆ๋‹˜์ด ์ถ•ํ•˜ํ•œ๋‹ค๋ฉฐ ํŒŒํ‹ฐ ์•ˆํ•˜๋ƒ๊ณ  ์ „ํ™”์ฃผ์…จ๊ธธ๋ž˜ ํŽธ์˜์ ์—์„œ ๋งฅ์ฃผ ํ•œ ์บ”๊ณผ ๊ผฌ๊น”์ฝ˜์œผ๋กœ ์กฐ์ดํ•˜๊ฒŒ ํŒŒํ‹ฐ ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด์ œ๋ถ€ํ„ฐ๊ฐ€ ์ง„์งœ ์‹œ์ž‘์ด๊ฒ ์ฃ . ์ž˜ ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค.

    ... ๋” ๋ณด๊ธฐ

    ์กฐํšŒ 1,367


    ใ€Š์ฝ๋Š” ์‚ฌ๋žŒ, ์“ฐ๋Š” ์‚ฌ๋žŒใ€‹

    ๋‚œ

    ... ๋” ๋ณด๊ธฐ

     โ€ข 

    ์ €์žฅ 4 โ€ข ์กฐํšŒ 889


    ใ€Š์˜ค๋Š˜ ํ•˜๋ฃจ ๋ฌธ๋“ ๋“  ์ƒ๊ฐใ€‹

    ์‚ถ

    ... ๋” ๋ณด๊ธฐ

     โ€ข 

    ์ €์žฅ 4 โ€ข ์กฐํšŒ 773


    < ์ดˆ๋™ 100๋งŒ ์žฅ, ๊ทธ๋Ÿฐ๋ฐ ํŒฌ์€ ์–ด๋”” ์žˆ์ฃ ? - ์—”ํ„ฐ ํ…Œํฌ์™€ ๋ฐ์ดํ„ฐ๋กœ

    1

    ... ๋” ๋ณด๊ธฐ

    ์ค‘์š”ํ•œ ์ผ๋ถ€ํ„ฐ ํ•ด๋ผ...250519

    1.โ—์ฑ…์€ ๊ทธ ๋ชจ๋“  ๊ฒƒ์ด๋‹ค.
    2.โ—๋…์„œ์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ฒƒ์€ ์žฌ๋ฏธ์ด๋‹ค.

    ... ๋” ๋ณด๊ธฐ

    < ์Šคํƒ€ํŠธ์—… PM์ด ๋„ทํ”Œ๋ฆญ์Šค '๋Œ€ํ™˜์žฅ ๊ธฐ์•ˆ์žฅ'์—์„œ ๋ฐฐ์›Œ์•ผ ํ•  2๊ฐ€์ง€ >

    1

    ... ๋” ๋ณด๊ธฐ

    ์ฃผ๊ฐ„ ์ธ๊ธฐ TOP 10

    1

    K๋ฆฌ๊ทธ ํ”„๋กœ๊ทธ๋ž˜๋จธ ์ปคํ”ผํ•œ์ž” ๊ฐœ๋ฐœ์ž

    ๊ฐœ๋ฐœ์ž์˜ ์žฅ์•  ๊ณต์œ  ๋ฌธํ™”

    2

    ์„๋ฏผ ์ปค๋ฆฌ์–ด ์ฝ”์น˜

    ์œ„๋กœ

    3

    ์žฅํ™์„ ์ŠคํŽ˜์ด์Šค์˜ค๋””ํ‹ฐ ๋ถ€๋Œ€ํ‘œ/CPO

    < ๋‡Œ๋ฅผ ๊ฐ€์žฅ ๋น ๋ฅด๊ฒŒ ๋ฐ”๊พธ๋Š” 3๊ฐ€์ง€ ๋ฐฉ๋ฒ• >

    4

    ๋‹ฌ๋ ˆ Apollo GraphQL Software Engineer

    Dependabot์„ ํ†ตํ•œ ์•ˆ์ „ํ•œ ์˜์กด์„ฑ ๊ด€๋ฆฌ

    5

    ๋ ˆ๋“œ๋ฒ„์Šค๋ฐฑ๋งจ ๋ฆฌ์„œ์ฒ˜ ์•ค ๋ผ์ดํ„ฐ

    โŸช์Šคํ† ๋ฆฌ๋ฅผ ๋งŒ๋“œ๋Š” ์‚ฌ๋žŒ๋“คโŸซ